IPM 2.0 for Potato late blight Control

A control strategies using host resistance and pathogen virulence

Geert JT Kessel, Evenhuis A, Van den Bosch GBM, Hoekzema GA, Bosman L, Topper CG, Esselink LJ, van Gent-Peltzer MPE, van der Lee TAJ and Schepers HTAM

VAGENIN

Potato & PLB control

Potatoes in the Netherlands:

•	Ware potato:	75 000 ha	50 t/ha
•	Seed potato:	40 000 ha	35 t/ha
•	Starch potato:	50 000 ha	45 t/ha
•	Total:	165 000 ha	→ 7.9 Mt/year ≈ 790 M€/year

Costs of PLB control in the Netherlands:

- 12 15 sprays per season, 1424 ton's a.i. / year
- Costs (fungicides, spraying, losses): 124 M€/yr (15 % of farm gate turn over)

EU and Global costs of PLB control: ≈ 900 M€/yr and 4800 M€/yr resp.

Ref.: Haverkort et al 2008

PLB in the Netherlands (1 July 2007)

www.kennisakker.nl

What is IPM (EU directive 2009)

IPM for the National Action Plans

- Prevention (rotation, sanitation, host resistance, healthy seed, landscaping)
- Monitoring pathogens
- Appropriate, science-based, measures
- Biological \rightarrow Physical \rightarrow non-chemical \rightarrow chemical
- No side-effects
- Sustainable application
- limit chance resistance / virulence development
- Professional use

Disease development & Spray decisions

Pathogen

IPM 2.0

IPM 1.0

- Weekly spray schedules ("IPM")
 - Host is present
- IPM 1.0
 - Host is present
 - Weather suitable for infection 1st generation DSS's
- IPM 2.0
 - Host is present
 - Susceptible?
 - Resistant? Which R-genes?
 - Weather suitable for infection (DSS's)
 - For how long?
 - Do spores survive atmospheric transport (DWIP)-
 - Pathogen is present
 - How much? (disease pressure)
 - Specific genotypes?
 - Specific virulences?
 - Fungicide resistance?

 WAGENINGEN

 UR

 For quality of life

New technologies

Host plant resistance:

- Identification/cloning of many R-genes
- Marker assisted breeding
- GM breeding (<u>www.DuRPh.nl</u>)

Environment:

- Improved weather forecasts
- DSS systems
- Precision agriculture

Pathogen:

- Identification of Avr genes incl. variation
- Effectoromics

WAGENINGEN UR For auality of life

• Direct PCR assays for virulence in pathogen

Monitoring for virulence with Avr-blb1

Rpi-blb1

- Class I Avr-blb1 absent: Virulent
- Real time monitoring
- Q-PCR for Blb1 virulence on P. infestans

P. infestans control

 WAGENINGEN

 UR

 For quality of life

Theo van de Lee Champouret et al 2009 MPMI

An IPM 2.0 control strategy for PLB

- Proof of concept
- IPM 2.0 control strategy for Potato Late Blight (PLB):
 - Host:

- Length of infection event: \rightarrow reduced dose rates
- We DO NOT spray unless ... ALL criteria for disease development are full filled
- Goal:
 - More durable and efficient use of resistance and fungicides
 - Durable cultivation of potato

Field Trials

- Two years (2010 & 2011)
- Two locations (Lelystad & Valthermond)
- Range of host resistance: S MR HR

S	100% dose rate protectant
MR	50% dose rate protectant
HR	25% dose rate protectant
	S MR HR HR HR

■ Custom experimental IPM 2.0 DSS → Spray timing

■ WITH or WITHOUT Continuous monitoring for virulence:
 ● Weekly lesion counts in monitoring plots
 ● Weekly lesion samples → PCR analysis Blb1 virulence

Field trial set up in Lelystad & Valthermond

Avr-Blb1 virulence assay within 5 hrs

Lelystad 2010

Valthermond 2010

Monitoring plots Lelystad & Valthermond

 WAGENINGENUR

 For quality of life

Lesion counts monitoring plots

For quality of life

Avr-Blb1 effector Screening

2010

NO infections on Blb1 plant material

Blb2	LS-17-Bionica		4C10	AVIRULENT
1R3R10	LS-17-Escort	18-aug-2010	4C11	AVIRULENT
1R3R10	LS-17-Escort		4C12	AVIRULENT
1R3R10	LS-18-Escort	18-aug-2010	4D1	AVIRULENT
1R3R10	LS-18-Escort		4D2	AVIRULENT
Blb2	LS-18-Bionica	18-aug-2010	4D3	VIRULENT
Blb2	LS-18-Bionica		4D4	AVIRULENT
Blb2	LS-19-Bionica		4D5	NO INFESTANS

• PCR: 633 samples, **1 virulent isolate** in Lelystad Confirmed in Bio Assay!

2011

- First infections on Blb1 plant material:
 - Lelystad: 8 August 2011
 - Valthermond: 15 August
- First PCR positive Blb1 virulent isolates:
 - Lelystad:

- 25 July 2011 (Bintje & Bionica)
- Valthermond: 15 August 2011 (Blb1 plant)

Results

Conclusions

- The full potential of IPM in PLB control is not yet realized, not even close!
- Ample room for improvement IF host resistance is introduced
- Resistance should be designed / introduced in the most durable way e.g. stacking of R-genes, multilines, landscaping etc. R-genes are too valuable to waste!
- Resistance should be managed after introduction!! It is NOT a silver bulet
 - We do not spray unless
 - Monitoring of the pathogen population
 - Adjust control strategy as needed
 - Protect the R-genes = Protect the environment!
- Fungicides remain an integral part of the control strategy but input much lower
- Spin off of IPM 2.0 control strategy for PLB to other "aerial" pathosystem e.g. rusts & mildews in cereals, downy mildew in grapes, apple and pear scab ...

The future?

- A Green agricultural landscape
- Resistant crops
- Online pathogen monitoring systems (e.g. automated spore traps ...
- On site phenotypic analysis for the various pathogens
- Central EU database for resulting data (e.g. Euroblight)
- DSS systems that include up to date resistance and virulence data in advice
- Low environmental foot print of agricultural production