IPM 2.0 meeting 2012

Breeding for insect resistance:

Genetic and metabolomic data fusion to unravel whitefly resistance in tomato

Floor van den Elsen

WU Entomology; insect-plant interactions cluster WU Plant Breeding-non host and insect resistance cluster

Whitefly biology

- Bemisia tabaci
 - Phloem/xylem feeder
 - Polyphagous (>500 species)
- Direct
 - Nutrient uptake adults/nymphs Phytotoxicity
- Direct \rightarrow Indirect
 - Honeydew source for fungi
 - >Airborne spores stick to fruit and leaves

Indirect

MAJOR CONCERN: Vector of plant viruses 90% genus Begomovirus (TYLCV)

Uneven ripening

ToCV; chlorosis/yellowing

Whitefly control

Chemical control

- Many disadvantages
- Durable control
 - Parasitoids /predators
 - 1) Efficiency high greenhouse; low (semi)-field
 - 2) Viral transmission not optimally controlled

Host Plant Resistance (HPR)

- 1) Crop wild relative donor in HPR
- 2) Screen wild species to define phenotype characteristics (xenosis/antibiosis)

Picture: Alex Wild

Encarsia parasitizes a whitefly nymph

~omics data linkage in segregating populations to identify whitefly resistance traits

Schematic outline experimental work

Set-up

Phenotyping F₂ population

- Experimental set-up
 - No choice screenings (toxicity)
 - Adult survival and fecundity

Key indicator traits for identification of *B. tabaci* fitness on host plant

Greenhouse set-up

No-choice set-up

Materials and methods

F₂ Bionomics data/ Whitefly survival and fecundity- Bulked Segregant Analyses

Merged GC- and LC-TOF-MS Bulked Segregant Analyses

- 1. 10 *BT*res:10 *BT*sus
- 2. Hierarchical cluster analyses
- 3. Inter- intragroup differentiation

S

R

 Multivariate and univariate statistics on complete metabolite profiles (OPLS-DA and q-values from FDR)

GC-MS 74 out of the 146 compounds correlated with resistance (n=62) or susceptibility (n=12)

 LC-TOF-MS 123 out of the 297 compounds correlated with resistance (n=39) or susceptibility (n=84)

Results

Bionomics data/survival F₂BC₁

phQTL and mQTL mapping

• All data for phQTL and mQTL analyses collected:

- phQTLs mapped for F_2 and $F_2 BC_1$ -44
- mQTLs from GC-MS mapped for F₂

Phenotypic and metabolomic QTLs for whitefly resistance

QTL mapping

QTLs

- Co-localization of phQTLs with mQTLs
- Co-localization of mQTLs
- Minor phQTLs in F_2 Major phQTLs in F_2BC_1

LC-TOF-MS fingerprinting in F_2BC_1 -44 (whole spectrum)

QTLs for a whitefly resistance-related Acyl sugars

•Co-localizes with phQTLs F_2BC_1 -44

• Co-localizes with mQTLs and phQTLs F₂

• Major metabolite QTLs identified (Explain up to 49.1% of trait)

In conclusion

- Data fusion from different platforms successful approach for breeding for insect resistance
 - ✓ Promotes accurate selection for HPR breeding → reduced trait complexity
 - Detection of hotspot QTLs

✓ Validates relations between resistance traits and correlating (e.g. biochemical/morphological) traits

Acknowledgements

WUR

Ben Vosman Sjaak van Heusden Marcel Dicke Colette Broekgaarden Betty Henken Greet Steenhuis-Broers Martijn van Kaauwen Ric de Vos Geert Stoopen Roland Mumm

Supported by

Technical Top Institute for Green Genetics

Participating companies Monsanto Holland BV Nunhems NL

