

Salicylic acid and heptanoyl salicylic acid induce distinct defence responses in a wheat-powdery mildew interaction

<u>TAYEH Christine</u>, RANDOUX Béatrice, BOURDON Natacha, JACQUES Philippe and REIGNAULT Philippe

GENERAL INTRODUCTION

Blumeria graminis f.sp. tritici is the causal agent of wheat (Triticum aestivum) powdery mildew

> great losses without the extensive use of conventional fungicides

consequences on health and environment
resistance in powdery mildew populations

<mark>éco</mark>phyto2018

Fungicides

Resistance inducers

Activation of the plant defence responses

Trehalose, Iodus 40®, Milsana®, OGAs-Ac, OGAs+Ac (Reignault *et al.*, 2001; Randoux *et al.*, 2006; Renard-Merlier *et al.*, 2007; Randoux *et al.*, 2010)

Salicylic Acid (SA)

Heptanoyl Salicylic Acid (HSA)

No direct effect on fungal germination *in vitro*

MATERIAL and **METHODS**

Wheat defence responses

induced by SA and HSA

fowards future-proof crop protection in Europ

Blighainpupegedationstbethex georgethe invisofettienatedo(unise texpresiment in (ni) conditions

High up-regulation of the lox gene the relation of the lox gene the relation of the lox pression of the local set of the loca

Increase of LOX activity

	SA	HSA	Balance of
οχο	\checkmark	Ø	upon SA tre
gstf	Ø	Ø	Global GS1
			nhi-encodi

Balance of ROS metabolism upon SA treatment

Global GST activity ≠ GST **phi**-encoding gene

Minorgupation at the second se

Elivitolicittectifiect

NP-requiring gene expression at the context

	SA	HSA	
chi	Ø	Ø	
chi1	\checkmark	Ø	ſ
chi4 precursor	\checkmark	\checkmark	

treatment recalls the chronology described by Kasprezwska (2003)

CONCLUSION

	SA	HSA	more numerous
chi	Ø	Ø	changes in the
chi1	\checkmark	Ø	genes expression
chi4 precursor	✓	\checkmark	SA less efficiency in
охо	\checkmark	Ø	protection level
gstf	Ø	Ø	
lox	\checkmark	\checkmark	Other triggered
PI-PLC2	\checkmark	\checkmark	defence pathways?
ltp	Ø	Ø	HSA -> Elicitor property
pal	Ø	Ø	
5	F 00 /	050/	Cost?
level	50%	95%	
A Cd	A POLI	D Cd AGT	Inter-proof crop protection in Encode

> UCEIV

French Ministry of Higher Education and Research INTERREG IV- PHYTOBIO

Thank you for your attention

