Understanding *Ramularia collo-cygni* in the past, present and future

James Fountaine
Taxonomy

Ramularia collo-cygni

Collum = neck

Cygnus = swan

Phyllum: *Hyphomycetes*

Order: *Dothideales*

Family: *Mycosphaerellaceae*

Section: *Mycosphaerella*
The spread of Ramularia Leaf Spot (RLS)

- Other known locations include: New Zealand, Australia, North and South America
GS45-49 Protect crops with fungicide

GS65 Fungus detected inside leaves 2-4 weeks before symptoms

GS0 Ramularia seed-borne

GS0 Ramularia detected by diagnostics but no visual symptoms

GS10-13 Ramularia detectable by diagnostics but no visual symptoms

GS25-30 Ramularia spots on dying leaves

GS75-83 Ramularia symptoms on heads and awns

GS25-30 Fungicides can reduce later disease epidemic

Leaf wetness and symptom development

Correlation between leaf wetness and symptom development

Spring barley in June for spring barley & early April for w barley

Asteromella?

Airborne spores

Asgard SAC
No dramatic cultivar resistance

- Varietal Resistance – S Barley 2011
Epidemiology of *R. collo-cygni*

Spore release and RLS - Bush 2008

- Spore release and RLS for *R. collo-cygni* over the period from 2nd July 2008 to 30th September 2008.
- The graph shows Ramularia DNA (in pograms) over time, with a peak around 20th August 2008.
- Percentage RLS is also indicated on the y-axis.
Control measures

- Chemical fungicides are the only option available at present
 - In the UK, a mixture of Prothioconazole + SDHI + Chlorothalonil at GS45-49 is recommended
 - Many of these chemicals are under threat from new EU legislation
 - SDHI fungicides, give excellent control
 - Significant resistance issues
 - Development of QoI and MBC resistance
 - MBC have not been used for RLS control
Ramularia protection 2009 – 2011 three year mean

- Epoxyconazole
- Izopyrazam + Cyprodinil
- Bixafen + Prothioconazole
- Xemium + Epoxyconazole
- Prothioconazole
- HGCAB2
- Boscalid + Epoxyconazole
- Chlorothalonil
Historical archive samples

Ramularia DNA on leaves and stems from the Hoosfield archive 1852 - 2007

Detection of *R. collo-cygni* in archive material

QoI resistance
Bioassay results MBC’s

Negative cross resistance is observed when a mutation is found at codon 198
Risk of fungicide resistance

- Relatively high risk

- DMI fungicides showing decline in efficacy
 - Older fungicides

- QoI and MBC showing high level of resistance in most populations

- SDHI resistance a real risk!
 - SAC and Syngenta have a joint project
Fungicide efficacy tests
Sequence of Sdh gene

- Sdh gene- sub-units A, B, C & D

RccSdhB

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>RccSdhB</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NgSdhB</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Replacement of Histidine

High level of fungicide resistance in related pathogens

Courtesy of Marta Piotrowska
Sequencing of genome

- Illumina/solexa base sequencing
 - Standard paired end library: 80x (4 Gb)
 - 3 kb and 6 kb mate-pair library (10x)
 - RNA seq library (80x)
- 454 Titanium sequencing
 - cDNA library to yield 180,000 reads
 - Genome library to yield 360,000 reads
Why sequence and initial data

• Comparative genetics with other related pathogens, to develop understanding of the plant-pathogen interactions

• CLC assembly of illumina and 454 data gives a genome size of 30 Mb in 355 supercontigs

• Close match to both *Mycosphaerella graminicola* and other *Mycospharella* spp.
Population genetics (SSR’s)

|----------|---------|---------|---------|----------|---------|----------|------------|---------|----------|-----------|

<table>
<thead>
<tr>
<th>SSR nr.</th>
<th>SSR type</th>
<th>Alleles per locus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>p5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>p5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>p5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>p5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>p5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>p5</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>p5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>p5</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>p5</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>p5</td>
<td>6</td>
</tr>
</tbody>
</table>
R. collo-cygni biology

• Using GFP isolate to understand development during the whole growing season

Photos courtesy of Maciej Kaczmarek
R. collo-cygni biology

Photos courtesy of Maciej Kaczmarek
R. collo-cygni biology

- Location of R.cc in seed

Thick layer of hyphae present under the seed coat, outside the aleurone layer of the endosperm

Photos courtesy of Maciej Kaczmarek
Acknowledgments

Dr. Fiona Burnett, Dr. Neil Havis, Mrs Jeanette Taylor and Mrs Linda Paterson at SAC for all the help and support

Dr. Bart Fraaije, Rothamsted Research

And both

Marta Piotrowska & Maciej Kaczmarek for being enthusiastic Ph.D. students