Biological disinfestation of tare soils contaminated with quarantine plant pathogens

Willemien Runia, Pieter Kastelein, Leo van Overbeek

Plant pathogen and weed seed eradication from waste streams

Composting

- Anaerobic fermentation
- Soil tares
- Survival of (quarantine) pathogens in soil tares was identified as 'knowledge gap' in our current understanding
 - Relevant for practice
 - Development of disinfection procedures for tare soils

Phytosanitary risks of reuse of waste streams and treated wastes for agricultural purposes , 2011, Plant Research International, Report 382.

Soil tares

- Industrial wastes from harvested products like potatoes, sugar beets, bulbs etc.,
- Considerable waste streams,
- Soil with crop residues (roots, fragments of tubers/ bulbs), rich in organic materials-
- BUT... also rich in (quarantine) phytopathogens,
- Never used for agriculture (used for construction of roads, crossovers, dikes, or just dumped into the sea)
- Eradication experiments done by Willemien Runia by heat treatments (aerated steam at 50-60°C, 3 min, complete eradication of *Verticillium, Sclerotium* Oomycete spores, and cyst nematodes)

Energy demanding process; not sustainable

Experimental design

Soil tares of Potatoes

- Two soil types: <u>sabulous clay</u> (21% clay, 2.4 % org matter, pH 7.2) and <u>(cover) sand</u> (3.2% org. matter, pH 5.5)
- Two pathogens: Ralstonia solanacearum bv 2 & Globodera pallida
- Five soil treatments: (1) No amendment (control), (2) grass cutting (2-3 cm), (3) Herbie 7025 (Thatchtec, Wageningen), (4) inundation, (5) inundation + Herbie 7025 (first year only)
- Four repetitions per treatment x soil
- Two years: 2011 (July September, 12 weeks) and 2012 (May – July, 12 weeks)

Experimental set up (Q facility PPO-AGV)

Globodera pallida cysts in mesh bags

Mixing Ralstonia solanacearum through soil

Placing mesh bags (with Rs <u>or</u> Gp) in buckets with soil (sand or clay)

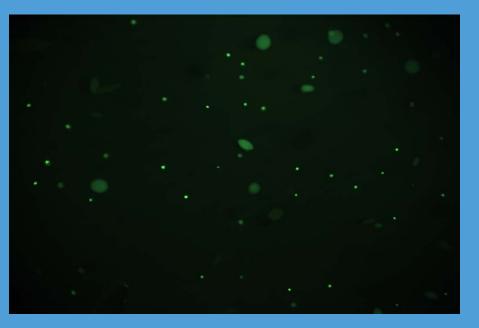
Opening of the buckets after 12 weeks

Soil temperature

			2011			2012	
		ſ	((
soil	Treatment	Min	Max	Avg	Min	Max	Avg
Sand	no	9.5	27.2	16.8	7.9	25.4	16.2
	Grass	9.0	27.1	16.5	7.3	26.7	16.1
	H 7025	9.1	23.8	16.6	7.6	24.6	15.6
	Inundation	9.7	25.5	16.3	8.4	25.3	16.8
	H 7025 + inund.	9.4	26.2	16.3	ND	ND	ND
Clay	no	9.0	26.3	16.4	7.9	25.3	16.1
	Grass	9.5	26.2	16.6	8.4	25.7	16.3
	H 7025	9.5	26.4	16.5	6.5	27.1	16.3
	Inundation	9.7	24.5	16.0	8.2	24.3	16.0
	H 7025 + inund.	9.8	26.9	16.4	ND	ND	ND
Ambient temperature		6.8	28.8	16.0	3.1	29.5	15.6

PLANT RESEARCH INTERNATIONAL WAGENINGEN UR

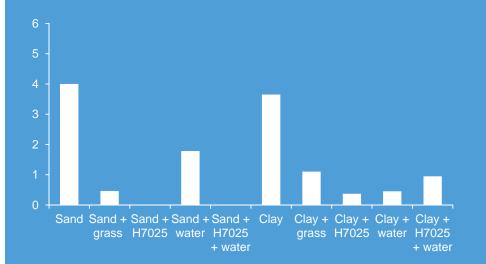
Analyses for pathogen survival

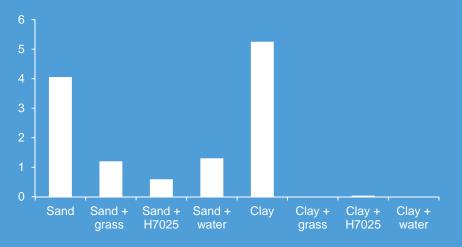

R. solanacearum biovar 2, strain 1609

- Immunofluorescence colony staining,
- Test on bacterial wilt in tomato
- G. pallida viability test on eggs (luring of larvae)
 - 2000 cysts in mesh bags in soil,
 - After 12 weeks of incubation, cysts were removed from bags,
 - Cysts were soaked in water, ground and eggs were suspended,
 - Juveniles hatched from eggs were lured to potato root exudate (duration of 6 weeks)
 - Number of juvenile nematodes counted

R. solanacearum survival test

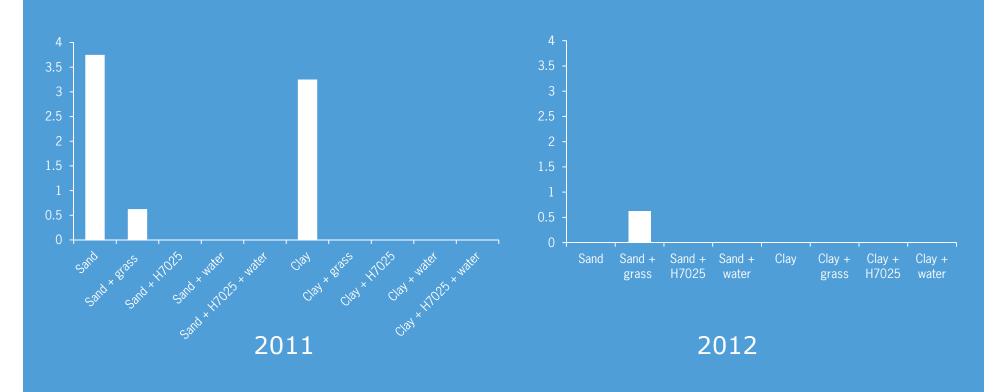
Immunofluorescence colony staining (IFC)


Test for bacterial wilt in tomato



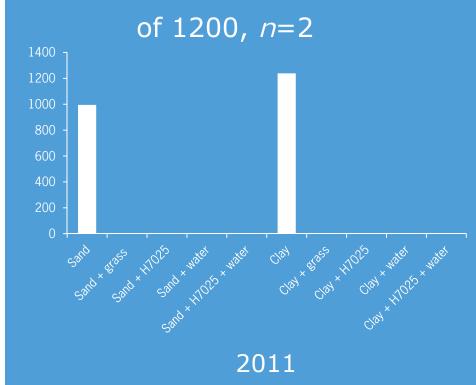
Ralstonia solanacearum bv 2 survival

Log R. solanacearum CFU/ g dry soil


2011

2012

Wilting in tomato (caused by R. solanacearum)


Tomato wilting (scale 1-5), n=3

G. pallida survival

Viability of eggs

of 3000, *n*=2

2012

Conclusions

- Viable R. solanacearum cells and G. pallida eggs consistently dropped in all treated soils.
- No consistent eradication of *R. solanacearum and G. pallida* was found for any of the applied treatments.
- Both species are quarantine pathogens in NL, so complete eradication from soil is necessary for eventual later applications.
- Soil treatment with Herbie 7025 seems most effective against *R. solanacearum*.

Thanks to: Leontine Colon, Loes den Nijs and Paul Jellema of the Netherlands Food and Consumer Product Safety Authority (NVWA) for helpful discussions.

