

Prediction of Sclerotinia Spore Release in Oilseed Rape Fields in the United Kingdom

Patrick Jackman¹, Jonathon West², Thierry Varraillon³, Stephanie Heard^{1,2}, Gail Canning² & Bruce Grieve¹

Why is Crop Disease a problem

- Global population expected to reach 9,000,000,000 people in 2050
- Global food supply must increase by the same amount to prevent widespread food crisis
- Increasing the supply of arable land to farm is likely to be a very difficult option

Why is Crop Disease a problem

- Increasing efficiency of existing arable land is thus the likely solution
- Currently approximately 16% of global potential crop production lost to diseases
- Eliminating or radically reducing crop yield lost to diseases must be a top priority

Sclerotinia in Oilseed Rape

- Currently Oilseed Rape is a highly valuable product in the UK (€500+ per tonne)
- Current typical yields on working UK farms are approx 3.7 tonnes per hectare
- Agricultural research stations have managed to increase this to 7 tonnes per hectare

Sclerotinia in Oilseed Rape

- Considerable scope for boosting crop yields
- Crop lost to Sclerotinia has been identified as a likely candidate for boosting yield
- Presence of spores is directly related to lost crops
- An early warning system that can anticipate the onset of sclerotinia infections will allow growers to protect their crop yield with a chemical spray

The SYield Project

- Currently a research project is in progress to design such an early warning system
- Experimental work has been performed in 2011 at the Rothamsted Research facility north of London, England
 An Oilseed Rape field
 - was deliberately inoculated with spore fruiting bodies

The SYield Project

Experimental Data retrieved consists of measurements of spore DNA in the canopy air as well weather data Additional experimental work has just been completed at Rothamsted Research, Syngenta and **Velcourt** sites A third series of experiments in 2013

The Raiso-Sclero Model

- A predictive model of Sclerotinia in French Oilseed rape was developed by Syngenta
- This model simulates soil climate conditions, apothecia life cycle and crop flowering development
- This model was applied to the datasets from Rothamsted Research to see if Sclerotinia in British Oilseed Rape fields can be modelled in the same way
- The results of applying the model showed that the major releases of spores could be regularly predicted
- Additional experimental data will be required to build quantitative predictive model of spore level

Raiso-Sclero Results

Conclusions and Future work

- The French Raiso-Sclero model was initially setup in conjunction with the CETIOM research institute with petal kit data and was successful in predicting Sclerotinia in French OSR and Beans
- Raiso-Sclero qualitatively successful in identifying periods of high spore release at Rothamsted
- The Raiso-Sclero model can be modified to better reflect the differing UK environmental conditions
- The experimental data from this years and next years field trials can be used to re-evaluate the ability of the model to predict spore levels
- Additional experimental data on crop damage will allow predictive models of lost yield to be developed

Conclusions and Future Work

