

A generic DSS for weed control

Per Rydahl Aarhus University, Denmark

EU-project 'ENDURE' 2007-2010 - survey on DSS for crop protection

- > 70 DSS analysed
- Report on <u>www.endure-network.eu</u>, 128 pp
- 9 DSS on weed control
- In context of reducing use of herbicides, 'best parts' were identified i 3 DSS:
 - DecidHerb
 CPOWeeds
 GestInf

INRA,France AU, Denmark CNR, Italy

EU-project PURE 2011-2014 - new DSS integrating best parts from 3 DSS

Based on a field report:

- 1. DecidHerb <u>or</u> CPOWeeds:
 - assess target efficacy on single weed species
- 2. CPOWeeds:
 - select single herbicides
 - calculate dose rates
 - optimize tank-mixtures
- **3.** GestInf:
 - calculate expected economic net return of alternative treatments

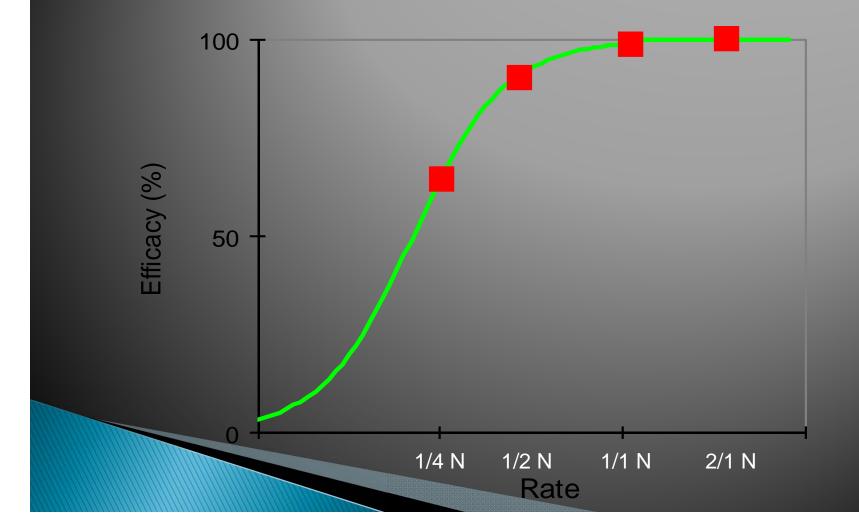
Step 1: target efficacy (DecidHerb)

- Short term needs for control of multi-species weed infestations
- Algorithams based on fuzzy sets (fuzzy logic)
- Output: percent control needed on biomass of single weeds after treatment

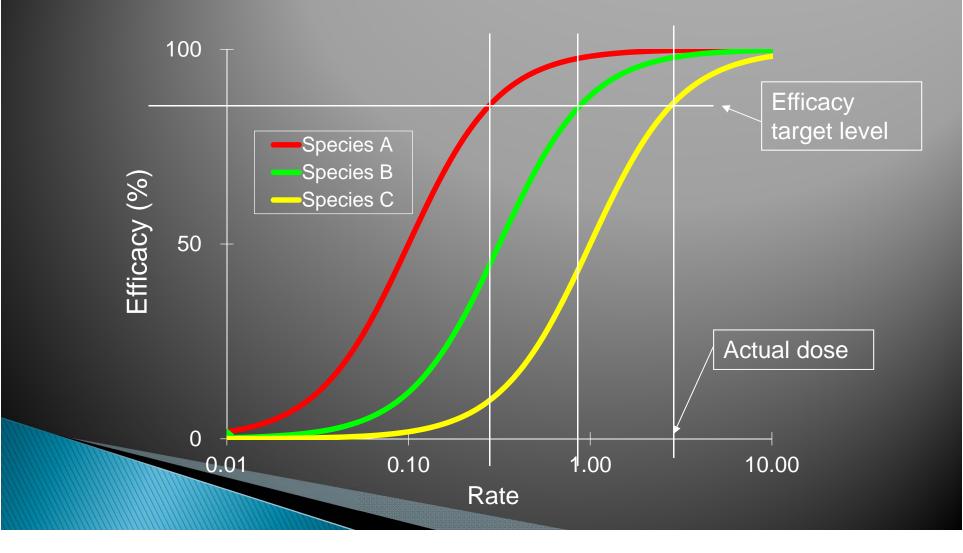
Step 1: target efficacy (CPOWeeds)

Multispecies weed infestations

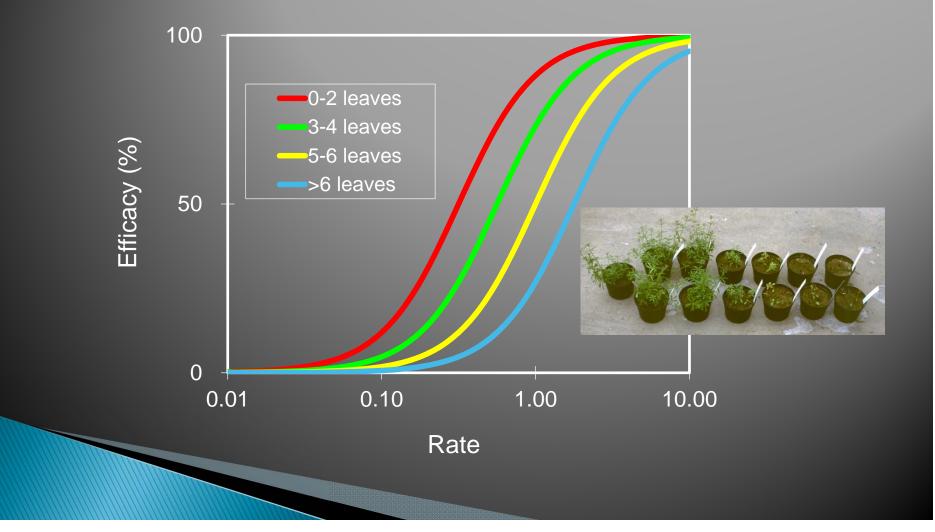
Integrates aspects, which farmers consider important:

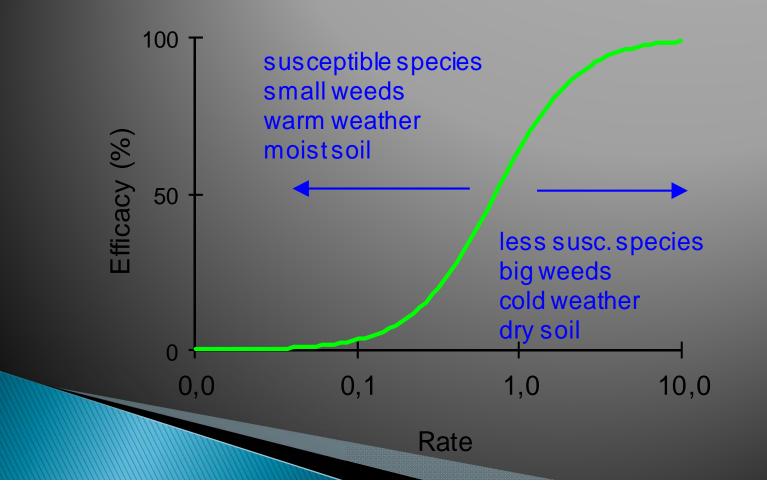

- potentials for yield quantity and quality
- weed propagation
- cosmetic aspects
- No objective models yet

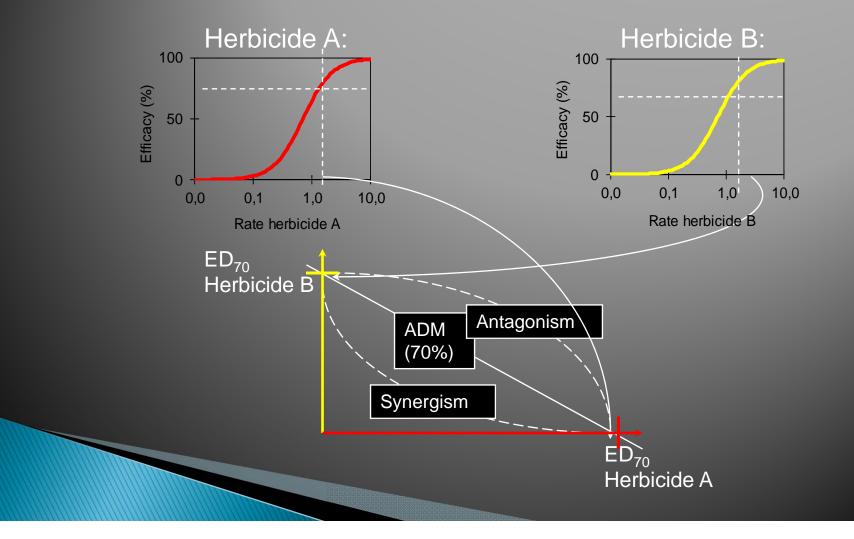
 algorithms based on expert knowledge and literature

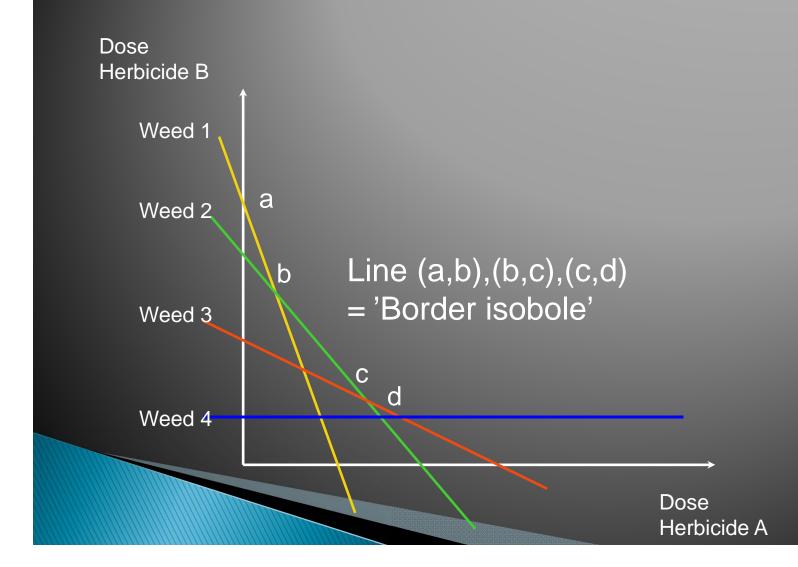

• Output:

percent control needed on biomass of single weeds after treatment


Step 2: herbicide dose response function for 1 weed


Step 2: 1 herbicide, 3 weeds


Step 2: 1 herbicide, 1 weed, 4 growth stages


Step 2: general attributes (now 2,1 mio. scenarios in DK)

Step 2: Optimization of tank-mixes by Additive Dose Model (ADM)

Step 2: Optimization for arbitrary constant relating to dose rates Example: 2 herbicides, 4 weeds

Step 3: Calc. of expected economic net return

• GestInf:

- Prediction of yield loss from mixed weed infestations
- Predicted efficacy of a treatment will reduce yield loss
- Using prices of crop and herbicides, net economic net return will be calculated

Implementation

- DecidHerb and GestInf

DecidHerb:

- Released in France
- Main crops, weeds and herbicides in France
- No field validation tests
- Not so many users

GestInf:

- Prototypes in Italy
- Wheat and maize, selected herbicides and weeds
- Few field validation tests

Implementation

- CPOWeeds

Denmark, released

• 32 crops, all herbicides,105 weeds

- about 1,300 subscribers
- > 2,000 field validation tests, robust weed control, 20-40% reduction of TFI

Norway, released

• 4 crops, all herbicides, 35 weeds

 3 years field validation tests: robust weed control, 20-30% reduction of cost of herbicides

Spain, prototype

- wheat, selected weeds and herbicides
- 3 years field validation tests: robust weed control, 30% reduction of cost of herbicides

China, prototype

paddy rice

selected weeds and herbicides

field validation test started in 2012, prelimenary results are promising

Implementation

- by integration of different DSSs

Germany, Italy and Slovenia: prototype

- EU-project 'PURE'
- CPOWeeds, DecidHerb and GestInf
- maize, selected herbcides and weeds
- field validation test start March 2013

Denmark, Germany and Poland: prototype

- EU-project 'DSSHerbicide'
- Integration of CPOWeeds and CeBrUs (University of Rostock)
- wheat, selected weeds and herbicides
- field validation tests, 1st years results: robust weed control, reduced input of herbicides

New DSS features in EU-project 'PURE'

- Control of already resistant weeds:
 - Documentation is solid
 - Resistant biotypes of weeds = 'new' weed species
 - high target efficacy on resistant biotypes
 - Herbicide dose-response functions:
 - low effect on resistant biotypes of same herbicide MOA
 normal effect of alternative MOAs
- Prevention of new resistance development:
 - Documentation is poor
 - Focus on efficacy!
 - Identification of risky MOAs, which shall be recommended max. every second generation of weeds
 - Focus on summer- and winter-annual weeds

Integration of mechanical weed control

Generic aspects - CPOWeeds

DSS now been implemented and validated in:

- Different climates:
 - Denmark/Norway: temperate, moist
 - Spain: sub-tropica
 - China:

sub-tropical, arid sub-tropical, moist

- Different crops, weeds, herbicides and interactions
- Robust control of weeds and potentials for reduction of herbicide use have been demonstrated in all scenarios
- Generic IT system architecture

User interfaces

Province: Zhejiang Version: Prototype for testing only

Tool: Solve weed problem > Input of field report ↔

Cond 作物保护在线

2012年9月26日更新 🛈

Crop	省份:谢 版本:初 工具: ≸	处理选项,排序方式:除草剂 成本			<返回 2 打印 效果 2		
Grow		编 号 ③	商品名 🕜	剂里 (鸟	单位庙)	成本 🕜 元庙	
Weed: Weed				实际 🕜	常规 🕜		
Сур		1	10%农得时WP	5克	30克	1.3 1.3	
ave se		2	10%草克星WP	8克	20克	3.2 3.2	
		3	2.5%稻杰EC	34	80	11.9 <i>11</i> .9	

Pros & Cons

Pros:

- Optimization of treatments on a field or farm level
- Robust recommendations
- Potentials for reduction of herbicide use
- May be customized for 'low- or high-hanging fruits'
- A point of reference regarding needs for control and efficacy of herbicides
- Colaborations on design of DSS and herbicide efficacy testing will be win/win
- Many requirements in Directive 2009/128/EC are met

Cons:

- Field tests of herbicides: 3-4 dose rates (weed species)
- Semi-field test of herbicides: 6-8 dose rates (weed growth stages, climatic conditions, ADM)
- Construction and field test of DSS prototypes

Advisors and agrochemical industry may no

