

Spatio-temporal modelling for preventing cereal aphids' outbreaks at France scale

Mamadou CISS Mamadou.Ciss@rennes.inra.fr

PhD-thesis in collaboration with ARVALIS-Institut du végétal Supervisors: Jean-Sébastien PIERRE, ECOBIO, Université Rennes 1 Charles-Antoine DEDRYVER, IGEPP, INRA Nicolas PARISEY, IGEPP, INRA Pierre TAUPIN, ARVALIS-Institut du végétal

Date: 02/10/2012

Plan

From biological realities to mathematical representation In this presentation Discussion and conclusion Agricultural issues Hypothesis and aim

Agricultural issues

Questioning The grain aphid (*Sitobion avenae*): causes **occasionally strong damages** to wheat during spring The systematic insecticide sprays against these aphids are often neither efficient nor necessary

Plan

From biological realities to mathematical representation In this presentation Discussion and conclusion Agricultural issues Hypothesis and aim

Hypothesis and aim

The facts:

Our hypothesis:

- Obligate parthenogenesis: no sexual generation
- apterous and winged adults
- Survival of parthenogens above a temperature around -10 C

From biological realities to mathematical representation In this presentation Discussion and conclusion Agricultural issues Hypothesis and aim

Hypothesis and aim

The facts:

Our hypothesis:

- Obligate parthenogenesis: no sexual generation
- apterous and winged adults
- Survival of parthenogens above a temperature around -10 C

From biological realities to mathematical representation In this presentation Discussion and conclusion Agricultural issues Hypothesis and aim

Hypothesis and aim

The facts:

- Obligate parthenogenesis: Our hypothesis: no sexual generation
- apterous and winged adults
- Survival of parthenogens above a temperature around -10 C

From biological realities to mathematical representation In this presentation Discussion and conclusion Agricultural issues Hypothesis and aim

Hypothesis and aim

Our hypothesis:

Possible representations of in situ overwintering success of parthenogens

The facts:

- Obligate parthenogenesis: no sexual generation
- apterous and winged adults
- Survival of parthenogens above a temperature around -10 C

From biological realities to mathematical representation In this presentation Discussion and conclusion

Sitobion avenae

Agricultural issues Hypothesis and aim

Our hypothesis:

Possible representations of in situ overwintering success of parthenogens

The facts:

- Obligate parthenogenesis: no sexual generation
- apterous and winged adults
- Survival of parthenogens above a temperature around -10 C

Aim: Explicit modelling of spring invasion of cereal growing areas from overwintering sites at France scale **in order to optimize the use of insecticide spray**

Plan

- From biological realities to mathematical representation
 Biological realities in our model
 - Mathematical representation
 - In this presentation
 - Landing rate (α_1)
 - Apterous growth rate (r)
 - Discussion and conclusion
 Discussion and conclusion

Biological realities in our model Mathematical representation

Biological realities

- Differentiation between apterous (A) and winged (C) aphids
- Output: A state of the state
- O Take-off rate (α_2)
- Solution $\mathbf{Landing}$ rate (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

- Initial conditions
 - At the end of the winter
 - Model running during spring
- Oifferentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- O Take-off rate (α_2)
- O Landing rate (α_1
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

Biological realities

Initial conditions

O Differentiation between apterous (A) and winged (C) aphids

Active flight (Diffusion) and passive flight (Convection)

- O Take-off rate (α_2)
- O Landing rate (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

Biological realities

- ② Differentiation between apterous (A) and winged (C) aphids
 - winged: flying aphids
 - apterous: aphids on the wheat
- Output: A ctive flight (Diffusion) and passive flight (Convection)
- O Take-off rate (α_2)
- Solution (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

Biological realities

- O Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- O Take-off rate (α_2)
- **Output** Landing rate (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

Biological realities

- Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
 - Low wind speed: active flight
 - High wind speed: passive flight
- O Take-off rate (α_2)
- Similar Landing rate (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

Biological realities

- O Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- **O Take-off rate** (α_2)
- 5 Landing rate (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

Biological realities

- Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- 3 Take-off rate (α_2)
 - proportion of winged larva
 - phenological stages of wheat
- Solution $\mathbf{Landing}$ rate (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

- Initial conditions
- O Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- **O** Take-off rate (α_2)
- Solution Landing rate (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

- Initial conditions
- Oifferentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- Take-off rate (α₂)
- Solution (α_1)
 - proportion of cultivated cereals
 - auto-correlation of cereal patches
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

- Initial conditions
- O Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- **O** Take-off rate (α_2)
- Solution Landing rate (α_1)
- Apterous growth rate (r)
- Boundary conditions

Biological realities in our model Mathematical representation

Biological realities

Initial conditions

- Oifferentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- Take-off rate (α₂)
- **(a)** Landing rate (α_1)
- Apterous growth rate (r)
 - temperature
 - phenological stages of wheat

Ø Boundary conditions

Biological realities in our model Mathematical representation

- Initial conditions
- O Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- **O** Take-off rate (α_2)
- Solution Landing rate (α_1)
- Apterous growth rate (r)
- Boundary conditions

Biological realities in our model Mathematical representation

- Initial conditions
- O Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- **O Take-off rate** (α_2)
- Solution Landing rate (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

- Initial conditions
- O Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- 3 Take-off rate (α_2)
- Solution (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

- Initial conditions
- O Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- **O Take-off rate** (α_2)
- Solution Landing rate (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

- Initial conditions
- O Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- 3 Take-off rate (α_2)
- Solution Landing rate (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

- Initial conditions
- O Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- 3 Take-off rate (α_2)
- Solution Landing rate (α_1)
- Apterous growth rate (r)
- Ø Boundary conditions

Biological realities in our model Mathematical representation

- Initial conditions
- O Differentiation between apterous (A) and winged (C) aphids
- Active flight (Diffusion) and passive flight (Convection)
- **O** Take-off rate (α_2)
- Solution Landing rate (α_1)
- Apterous growth rate (r)
- Boundary conditions

Plan

- Hypothesis and aim
- From biological realities to mathematical representation
 Biological realities in our model
 - Mathematical representation
- In this presentation
 - Landing rate (α_1)
 - Apterous growth rate (r)
- Discussion and conclusion
 Discussion and conclusion

Biological realities in our model Mathematical representation

Mathematical representation

Equations

$$\begin{cases} \frac{\partial C}{\partial t} + (1 - \lambda_v)v(t, x)\nabla_x(C) = \lambda_v D(t, x)\Delta_x(C) + C + A\alpha_2 - C\alpha_1\\ \frac{\partial A}{\partial t} = rA + C\alpha_1 - A\alpha_2 \end{cases}$$

- Differentiation between apterous (A) and winged (C) aphids
- Convection (passive flight) and diffusion (active flight)
- Definition of growth rate
- Landing rate (α_1)
- Take-off rate (α₂)

Biological realities in our model Mathematical representation

Mathematical representation

Equations

$$\begin{cases} \frac{\partial C}{\partial t} + (1 - \lambda_v)v(t, x)\nabla_x(C) = \lambda_v D(t, x)\Delta_x(C) + C + A\alpha_2 - C\alpha_1\\ \frac{\partial A}{\partial t} = rA + C\alpha_1 - A\alpha_2 \end{cases}$$

- Differentiation between apterous (A) and winged (C) aphids
- Convection (passive flight) and diffusion (active flight)
- Definition of growth rate
- Landing rate (α₁)
- Take-off rate (α₂)

Biological realities in our model Mathematical representation

Mathematical representation

Equations

$$\begin{cases} \frac{\partial C}{\partial t} + (1 - \lambda_{v})v(t, x)\nabla_{x}(C) = \lambda_{v}D(t, x)\Delta_{x}(C) + C + A\alpha_{2} - C\alpha_{1} \\ \frac{\partial A}{\partial t} = rA + C\alpha_{1} - A\alpha_{2} \end{cases}$$

- Differentiation between apterous (A) and winged (C) aphids
- Convection (passive flight) and diffusion (active flight)
- Definition of growth rate
- Landing rate (α₁)
- Take-off rate (α₂)

Biological realities in our model Mathematical representation

Mathematical representation

Equations

$$\begin{cases} \frac{\partial C}{\partial t} + (1 - \lambda_v)v(t, x)\nabla_x(C) = \lambda_v D(t, x)\Delta_x(C) + C + A\alpha_2 - C\alpha_1\\ \frac{\partial A}{\partial t} = \mathbf{r}A + C\alpha_1 - A\alpha_2 \end{cases}$$

- Differentiation between apterous (A) and winged (C) aphids
- Convection (passive flight) and diffusion (active flight)
- Definition of growth rate
- Landing rate (α_1)
- Take-off rate (α₂)

Biological realities in our model Mathematical representation

Mathematical representation

Equations

$$\begin{cases} \frac{\partial C}{\partial t} + (1 - \lambda_v)v(t, x)\nabla_x(C) = \lambda_v D(t, x)\Delta_x(C) + C + A\alpha_2 - C\alpha_1\\ \frac{\partial A}{\partial t} = rA + C\alpha_1 - A\alpha_2 \end{cases}$$

- Differentiation between apterous (A) and winged (C) aphids
- Convection (passive flight) and diffusion (active flight)
- Definition of growth rate
- Landing rate (α₁)
- Take-off rate (α₂)

Biological realities in our model Mathematical representation

Mathematical representation

Equations

$$\begin{cases} \frac{\partial C}{\partial t} + (1 - \lambda_v)v(t, x)\nabla_x(C) = \lambda_v D(t, x)\Delta_x(C) + C + A\alpha_2 - C\alpha_1\\ \frac{\partial A}{\partial t} = rA + C\alpha_1 - A\alpha_2 \end{cases}$$

- Differentiation between apterous (A) and winged (C) aphids
- Convection (passive flight) and diffusion (active flight)
- Definition of growth rate
- Landing rate (α_1)
- Take-off rate (α₂)
Biological realities in our model Mathematical representation

Mathematical representation

Initial conditions

$$\begin{cases} C(0,x) = C_0(x) \\ A(0,x) = A_0(x) \end{cases}$$

Initial conditions

Estimations of aphids' reservoirs at the end of winter

Biological realities in our model Mathematical representation

Mathematical representation

Boundary conditions

$$C = 0$$

$$A = 0$$

$$D\nabla C.\eta = I$$

$$\nabla A.\eta = I$$

Witch mean

marine area and higher mountains : no flow

land borders and other mountains: constant flow

Biological realities in our model Mathematical representation

Mathematical representation

Boundary conditions

$$C = 0$$

$$A = 0$$

$$D\nabla C.\eta = l$$

$$\nabla A.\eta = l$$

Witch mean

marine area and higher mountains : no flow

land borders and other mountains: constant flow

Biological realities in our model Mathematical representation

Mathematical representation

Boundary conditions

$$C = 0$$

$$A = 0$$

$$D\nabla C.\eta = I$$

$$\nabla A.\eta = I$$

Witch mean

marine area and higher mountains : no flow

Iand borders and other mountains: constant flow

Discussion and conclusion

Landing rate (α_1) Apterous growth rate (r)

In this presentation

Model

- Mathematical study is done
- All coefficients are deterministically determinated
- Focus on 2 interresting parameters

Model

$$\frac{\partial C}{\partial t} + (1 - \lambda_{v})v(t, x)\nabla_{x}(C) = \lambda_{v}D(t, x)\Delta_{x}(C) + C + A\alpha_{2}(s, N4) - C\alpha_{1}(p, \eta)$$

$$\frac{\partial A}{\partial t} = r(\theta, s)A + C\alpha_1(p, \eta) - A\alpha_2(s, N4)$$

Discussion and conclusion

Landing rate (α_1) Apterous growth rate (r)

In this presentation

Model

- Mathematical study is done
- All coefficients are deterministically determinated

Focus on 2 interresting parameters

Model

$$\frac{\partial C}{\partial t} + (1 - \lambda_{v})v(t, x)\nabla_{x}(C) = \lambda_{v}D(t, x)\Delta_{x}(C) + C + A\alpha_{2}(s, N4) - C\alpha_{1}(p, \eta)$$

$$\frac{\partial A}{\partial t} = r(\theta, s)A + C\alpha_1(p, \eta) - A\alpha_2(s, N4)$$

In this presentation Discussion and conclusion Landing rate (α_1) Apterous growth rate (r)

In this presentation

Model

- Mathematical study is done
- All coefficients are deterministically determinated
- Focus on 2 interresting parameters

Model

 $\frac{\partial C}{\partial t} + (1 - \lambda_v)v(t, x)\nabla_x(C) = \lambda_v D(t, x)\Delta_x(C) + C + A\alpha_2(s, N4) - C\alpha_1(\rho, \eta)$

 $\frac{\partial A}{\partial t} = r(\theta, s)A + C\alpha_1(p, \eta) - A\alpha_2(s, N4)$

Plan

From biological realities to mathematical representation
 Biological realities in our model
 Mathematical representation

In this presentation
 Landing rate (α₁)

• Apterous growth rate (r)

Discussion and conclusion
 Discussion and conclusion

Discussion and conclusion

Landing rate (α₁) Apterous growth rate (*r*)

Landing rate (α_1)

- experimental data non available, partially known process,...,numerical simulations
- proportion of cultivated cereals
- auto-correlation of cereal patches

Landing rate (α_1) Apterous growth rate (r

Landing rate (α_1)

- experimental data non available, partially known process,...,numerical simulations
- proportion of cultivated cereals
- auto-correlation of cereal patches

Figure: Studied landscape with wheat fields in green

Landing rate (α_1) Apterous growth rate (r

Landing rate (α_1)

- experimental data non available, partially known process,...,numerical simulations
- proportion of cultivated cereals
- auto-correlation of cereal patches

Figure: Studied landscape with wheat fields in green

Landing rate (α_1) Apterous growth rate (r

Landing rate (α_1)

- experimental data non available, partially known process,...,numerical simulations
- proportion of cultivated cereals
- auto-correlation of cereal patches

Figure: Studied landscape with wheat fields in green

Discussion and conclusion

Landing rate (α_1) Apterous growth rate (r)

Multiscale model

A multiscale model:

- Macroscale system: behavioral rules
 - Mathematical model previously described.
 - Discretization of our space: 5km X 5km

Ø Microscale system: mathematical functions

- Microscale cells: for each macroscale pixel we have 400 cells (25m X 25m)
- Cellular automata
- Link between microscale system and macroscale sysytem
 - Summary statistics
 - Transforming behavioral rules in mathematical functions

In this presentation Aptero

Multiscale model

A multiscale model:

Macroscale system: behavioral rules

- Mathematical model previously described
- Discretization of our space: 5km X 5km

Ø Microscale system: mathematical functions

- Microscale cells: for each macroscale pixel we have 400 cells (25m X 25m)
- Cellular automata
- Iink between microscale system and macroscale sysytem
 - Summary statistics
 - Transforming behavioral rules in mathematical functions

In this presentation Apterous
Discussion and conclusion

Multiscale model

A multiscale model:

- Macroscale system: behavioral rules
 - Mathematical model previously described
 - Discretization of our space: 5km X 5km

Ø Microscale system: mathematical functions

- Microscale cells: for each macroscale pixel we have 400 cells (25m X 25m)
- Cellular automata
- Iink between microscale system and macroscale sysytem
 - Summary statistics
 - Transforming behavioral rules in mathematical functions

Landing rate (α_1) Apterous growth rate

Multiscale model

A multiscale model:

- Macroscale system: behavioral rules
 - Mathematical model previously described

Discussion and conclusion

- Discretization of our space: 5km X 5km
- Ø Microscale system: mathematical functions
 - Microscale cells: for each macroscale pixel we have 400 cells (25m X 25m)
 - Cellular automata
- Link between microscale system and macroscale sysytem
 - Summary statistics
 - Transforming behavioral rules in mathematical functions

Landing rate (α_1) Apterous growth rate (

Multiscale model

A multiscale model:

Macroscale system: behavioral rules

Mathematical model previously described

Discussion and conclusion

- Discretization of our space: 5km X 5km
- Ø Microscale system: mathematical functions
 - Microscale cells: for each macroscale pixel we have 400 cells (25m X 25m)
 - Cellular automata
- Iink between microscale system and macroscale sysytem

Summary statistics

Transforming behavioral rules in mathematical functions

Landing rate (α_1) Apterous growth rate (

Multiscale model

A multiscale model:

Macroscale system: behavioral rules

Mathematical model previously described

Discussion and conclusion

- Discretization of our space: 5km X 5km
- Ø Microscale system: mathematical functions
 - Microscale cells: for each macroscale pixel we have 400 cells (25m X 25m)
 - Cellular automata
- Iink between microscale system and macroscale sysytem

Summary statistics

Transforming behavioral rules in mathematical functions

Landing rate (α_1) Apterous growth rate (

Multiscale model

A multiscale model:

Macroscale system: behavioral rules

Mathematical model previously described

Discussion and conclusion

- Discretization of our space: 5km X 5km
- Ø Microscale system: mathematical functions
 - Microscale cells: for each macroscale pixel we have 400 cells (25m X 25m)
 - Cellular automata
- Link between microscale system and macroscale sysytem
 - Summary statistics
 - Transforming behavioral rules in mathematical functions

Figure: Microscale pixel

Landing rate (α_1 Apterous growth

Multiscale model

A multiscale model:

- Macroscale system: behavioral rules
 - Mathematical model previously described

Discussion and conclusion

- Discretization of our space: 5km X 5km
- Ø Microscale system: mathematical functions
 - Microscale cells: for each macroscale pixel we have 400 cells (25m X 25m)
 - Cellular automata
- Ink between microscale system and macroscale sysytem
 - Summary statistics
 - Transforming behavioral rules in mathematical functions

athematical representation Landing rate (In this presentation Apterous grow Discussion and conclusion

Multiscale model

A multiscale model:

- Macroscale system: behavioral rules
 - Mathematical model previously described
 - Discretization of our space: 5km X 5km
- Ø Microscale system: mathematical functions
 - Microscale cells: for each macroscale pixel we have 400 cells (25m X 25m)
 - Cellular automata
- Link between microscale system and macroscale system
 - Summary statistics
 - Transforming behavioral rules in mathematical functions

Athematical representation Landing rate (a In this presentation Apterous growth Discussion and conclusion

Multiscale model

A multiscale model:

- Macroscale system: behavioral rules
 - Mathematical model previously described
 - Discretization of our space: 5km X 5km
- Ø Microscale system: mathematical functions
 - Microscale cells: for each macroscale pixel we have 400 cells (25m X 25m)
 - Cellular automata
- Link between microscale system and macroscale system
 - Summary statistics
 - Transforming behavioral rules in mathematical functions

Landing rate (α_1 Apterous growth

Multiscale model

A multiscale model:

- Macroscale system: behavioral rules
 - Mathematical model previously described

Discussion and conclusion

- Discretization of our space: 5km X 5km
- Ø Microscale system: mathematical functions
 - Microscale cells: for each macroscale pixel we have 400 cells (25m X 25m)
 - Cellular automata
- Link between microscale system and macroscale system
 - Summary statistics
 - Transforming behavioral rules in mathematical functions

From behavioral rules to mathematical functions

5 assumptions on the landing behaviour

- Aphids land once they have perceived a cereal field
- Landing rate is linked to landscape discontinuances (*e.g.* field edges)
- In opposite of the 2nd rule, the landing rate is inversely linked to landscape discontinuances
- A combination of the 1st rule and the 2nd rule
- A combination of the 1st rule and the 3rd rule

lead to 5 functions in the macroscale model

From behavioral rules to mathematical functions

5 assumptions on the landing behaviour

- Aphids land once they have perceived a cereal field
- Landing rate is linked to landscape discontinuances (*e.g.* field edges)
- In opposite of the 2nd rule, the landing rate is inversely linked to landscape discontinuances
- A combination of the 1st rule and the 2nd rule
- A combination of the 1st rule and the 3rd rule

lead to 5 functions in the macroscale model

From behavioral rules to mathematical functions

5 assumptions on the landing behaviour

- Aphids land once they have perceived a cereal field
- Landing rate is linked to landscape discontinuances (*e.g.* field edges)
- In opposite of the 2nd rule, the landing rate is inversely linked to landscape discontinuances
- A combination of the 1st rule and the 2nd rule
- A combination of the 1st rule and the 3rd rule

lead to 5 functions in the macroscale model

Simulations of α_1 functions in the macroscale system

At Brittany: western of France

- Aphids land once they have perceived a cereal field
- Landing rate is linked to landscape discontinuances (*e.g.* field edges)
- In opposite of the 2nd rule, the landing rate is inversely linked to landscape discontinuances
- A combination of the 1st rule and the 2nd rule
- 6 A combination of the 1st rule and the 3rd rule

- Aphids land once they have perceived a cereal field
- Landing rate is linked to landscape discontinuances (*e.g.* field edges)
- In opposite of the 2nd rule, the landing rate is inversely linked to landscape discontinuances
- A combination of the 1st rule and the 2nd rule
- 6 A combination of the 1st rule and the 3rd rule

- Aphids land once they have perceived a cereal field
- Landing rate is linked to landscape discontinuances (*e.g.* field edges)
- In opposite of the 2nd rule, the landing rate is inversely linked to landscape discontinuances
- A combination of the 1st rule and the 2nd rule
- 6 A combination of the 1st rule and the 3rd rule

- Aphids land once they have perceived a cereal field
- Landing rate is linked to landscape discontinuances (*e.g.* field edges)
- In opposite of the 2nd rule, the landing rate is inversely linked to landscape discontinuances
- A combination of the 1st rule and the 2nd rule
- A combination of the 1st rule and the 3rd rule

- Aphids land once they have perceived a cereal field
- Landing rate is linked to landscape discontinuances (*e.g.* field edges)
- In opposite of the 2nd rule, the landing rate is inversely linked to landscape discontinuances
- A combination of the 1st rule and the 2nd rule
- A combination of the 1st rule and the 3rd rule

Landing rate (α_1) Apterous growth rate (r

- Aphids land once they have perceived a cereal field
- Landing rate is linked to landscape discontinuances (*e.g.* field edges)
- In opposite of the 2nd rule, the landing rate is inversely linked to landscape discontinuances
- A combination of the 1st rule and the 2nd rule
- A combination of the 1st rule and the 3rd rule

In this presentation Apter Discussion and conclusion

- Aphids land once they have perceived a cereal field
- Landing rate is linked to landscape discontinuances (*e.g.* field edges)
- In opposite of the 2nd rule, the landing rate is inversely linked to landscape discontinuances
- A combination of the 1st rule and the 2nd rule
- A combination of the 1st rule and the 3rd rule

In this presentation Aptern

- Aphids land once they have perceived a cereal field
- Landing rate is linked to landscape discontinuances (*e.g.* field edges)
- In opposite of the 2nd rule, the landing rate is inversely linked to landscape discontinuances
- A combination of the 1st rule and the 2nd rule
- A combination of the 1st rule and the 3rd rule

Landing rate (α_1) Apterous growth rate

Conclusion on the landing-rate

Modelling of a complex process only partially known

Discussion and conclusion

- Oombining of a macroscale (mathematical analysis) and a microscale model(numerical resolution)
- Modelling of aphid landing rate behaviour
- An accepted article: Ciss, M., Parisey, N., Dedryver, C.-A., Pierre, J.-S., 2012. Understanding flying insect dispersion: multiscale analyses of fragmented landscapes. *Ecological Informatics*, in press

Landing rate (α_1) Apterous growth rate (r)

Conclusion on the landing-rate

Modelling of a complex process only partially known

Discussion and conclusion

- Combining of a macroscale (mathematical analysis) and a microscale model(numerical resolution)
- Modelling of aphid landing rate behaviour
- An accepted article: Ciss, M., Parisey, N., Dedryver, C.-A., Pierre, J.-S., 2012. Understanding flying insect dispersion: multiscale analyses of fragmented landscapes. *Ecological Informatics*, in press
Landing rate (α_1) Apterous growth rate (r)

Conclusion on the landing-rate

Modelling of a complex process only partially known

- Ormalization of a macroscale (mathematical analysis) and a microscale model(numerical resolution)
- Modelling of aphid landing rate behaviour
- An accepted article: Ciss, M., Parisey, N., Dedryver, C.-A., Pierre, J.-S., 2012. Understanding flying insect dispersion: multiscale analyses of fragmented landscapes. *Ecological Informatics*, in press

Landing rate (α_1) Apterous growth rate (r

Conclusion on the landing-rate

Modelling of a complex process only partially known

- Ocmbining of a macroscale (mathematical analysis) and a microscale model(numerical resolution)
- Modelling of aphid landing rate behaviour
- An accepted article: Ciss, M., Parisey, N., Dedryver, C.-A., Pierre, J.-S., 2012. Understanding flying insect dispersion: multiscale analyses of fragmented landscapes. *Ecological Informatics*, in press

Plan

- Biological realities in our model
- Mathematical representation
- In this presentation
 - Landing rate (α_1)
 - Apterous growth rate (r)
- Discussion and conclusion
 Discussion and conclusion

Landing rate (α_1 Apterous growth r

Discussion and conclusion

Apterous growth rate (r)

- temperature
- phenological stages of wheat

Discussion and conclusion

Landing rate (α_1) Apterous growth rate (r)

Apterous growth rate (r)

- temperature
- phenological stages of wheat

Athematical representation Landing rate (a In this presentation Apterous growt Discussion and conclusion

Apterous growth rate (r)

- temperature
- phenological stages of wheat
- For the modelling:
 - data collected on fields
 - Method: nonlinear regression

Discussion and conclusion

Landing rate (α_1) Apterous growth rate (r)

Apterous growth rate (r)

Apterous growth rate (r) depends on:

- temperature
- phenological stages of wheat

For the modelling:

- data collected on fields
 - *S. avenae* population densities measured in wheat fields from 1975 to 2004
 - Phenological stages of wheat recorded according to Zadoks' numeric scale
 - minimum, maximum and mean temperature data daily recorded

Method: nonlinear regression

Discussion and conclusion

Landing rate (α_1) Apterous growth rate

Apterous growth rate (r)

- temperature
- phenological stages of wheat
- For the modelling:
 - data collected on fields
 - Method: nonlinear regression

Subject presentation From biological realities to mathematical representation

In this presentation Discussion and conclusion ₋anding rate (∝₁) Apterous growth rate (*r*)

Conclusion on the growth rate

Modelling with field data

2 Validation on field data in 2004: $R^2 = 51.18\%$

- R² can be better
- Article submitted

Landing rate ($lpha_1$) Apterous growth rate (*r*)

Conclusion on the growth rate

Modelling with field data

2 Validation on field data in 2004: $R^2 = 51.18\%$

- R² can be better
- Article submitted

Landing rate (α_1) Apterous growth rate (r)

Conclusion on the growth rate

- Modelling with field data
- **2** Validation on field data in 2004: $R^2 = 51.18\%$

- R² can be better
- Article submitted

Landing rate (α_1) Apterous growth rate (r)

Conclusion on the growth rate

- Modelling with field data
- **2** Validation on field data in 2004: $R^2 = 51.18\%$

- R² can be better
- Article submitted

Plan

From biological realities to mathematical representation
 Biological realities in our model
 Mathematical representation

Mathematical representation

In this presentation

- Landing rate (α_1)
- Apterous growth rate (r)

Discussion and conclusion
 Discussion and conclusion

Discussion and conclusion

- Model's definition
- Mathematical study is done
- All coefficients have been estimated
- Next step: model's validation on data
- Next step: making of Decision Support System (DSS)

Discussion and conclusion

The first simulation of our model

using the parametrized and validate model in order to optimize the use of insecticide spray

Discussion and conclusion

The first simulation of our mode

using the parametrized and validate model in order to optimize the use of insecticide spray

Discussion and conclusion

The first simulation of our mode

using the parametrized and validate model in order to optimize the use of insecticide spray

Discussion and conclusion

Acknowlegments

- Pierre Taupin, Nathalie Verjux, Fabrice Moreau, Jean-Baptiste Thibord
- Sébastien Gaucel, Cédric Wolf, Sylvain Poggi, Cheikh Samb, Mohamed Lemine, Bouchra
- Thierry Caquet, Thierry Hoch, Isabelle Amat, Maurice Hullé, Frédéric Fabre, Michel Langlais
- Hugo, Sarah, Xavier, Kévin, Maxime
- Lucie, Patricia, Stéphanie, Géraldine, Pierre, Gaël, Solenn, Régis, Anne-Sophie

Discussion and conclusion

THANK YOU FOR YOUR ATTENTION

