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Questioning
The grain aphid (Sitobion avenae): causes occasionally strong
damages to wheat during spring
The systematic insecticide sprays against these aphids are often
neither efficient nor necessary
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Sitobion avenae

The facts:

Obligate parthenogenesis:
no sexual generation
apterous and winged adults
Survival of parthenogens
above a temperature
around -10 C

Our hypothesis:
Possible representations of in situ overwintering
success of parthenogens

Aim: Explicit modelling of spring invasion of cereal growing areas
from overwintering sites at France scale in order to optimize the
use of insecticide spray
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Initial conditions {
C(0, x) = C0(x)
A(0, x) = A0(x)

Initial conditions
Estimations of aphids’ reservoirs at the end of winter
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Pierre, J.-S., 2012. Understanding flying insect dispersion:
multiscale analyses of fragmented landscapes. Ecological
Informatics, in press



Subject presentation
From biological realities to mathematical representation

In this presentation
Discussion and conclusion

Landing rate (α1)
Apterous growth rate (r )

Conclusion on the landing-rate

1 Modelling of a complex process only partially known
2 Combining of a macroscale (mathematical analysis) and a

microscale model(numerical resolution)
3 Modelling of aphid landing rate behaviour
4 An accepted article: Ciss, M., Parisey, N., Dedryver, C.-A.,

Pierre, J.-S., 2012. Understanding flying insect dispersion:
multiscale analyses of fragmented landscapes. Ecological
Informatics, in press



Subject presentation
From biological realities to mathematical representation

In this presentation
Discussion and conclusion

Landing rate (α1)
Apterous growth rate (r )

Conclusion on the landing-rate

1 Modelling of a complex process only partially known
2 Combining of a macroscale (mathematical analysis) and a

microscale model(numerical resolution)
3 Modelling of aphid landing rate behaviour
4 An accepted article: Ciss, M., Parisey, N., Dedryver, C.-A.,

Pierre, J.-S., 2012. Understanding flying insect dispersion:
multiscale analyses of fragmented landscapes. Ecological
Informatics, in press



Subject presentation
From biological realities to mathematical representation

In this presentation
Discussion and conclusion

Landing rate (α1)
Apterous growth rate (r )

Conclusion on the landing-rate

1 Modelling of a complex process only partially known
2 Combining of a macroscale (mathematical analysis) and a

microscale model(numerical resolution)
3 Modelling of aphid landing rate behaviour
4 An accepted article: Ciss, M., Parisey, N., Dedryver, C.-A.,

Pierre, J.-S., 2012. Understanding flying insect dispersion:
multiscale analyses of fragmented landscapes. Ecological
Informatics, in press



Plan

1 Subject presentation
Agricultural issues
Hypothesis and aim

2 From biological realities to mathematical representation
Biological realities in our model
Mathematical representation

3 In this presentation
Landing rate (α1)
Apterous growth rate (r )

4 Discussion and conclusion
Discussion and conclusion



Subject presentation
From biological realities to mathematical representation

In this presentation
Discussion and conclusion

Landing rate (α1)
Apterous growth rate (r )

Apterous growth rate (r )

Apterous growth rate (r ) depends on:
temperature
phenological stages of wheat



Subject presentation
From biological realities to mathematical representation

In this presentation
Discussion and conclusion

Landing rate (α1)
Apterous growth rate (r )

Apterous growth rate (r )

Apterous growth rate (r ) depends on:
temperature
phenological stages of wheat



Subject presentation
From biological realities to mathematical representation

In this presentation
Discussion and conclusion

Landing rate (α1)
Apterous growth rate (r )

Apterous growth rate (r )

Apterous growth rate (r ) depends on:
temperature
phenological stages of wheat

For the modelling:
data collected on fields
Method: nonlinear regression



Subject presentation
From biological realities to mathematical representation

In this presentation
Discussion and conclusion

Landing rate (α1)
Apterous growth rate (r )

Apterous growth rate (r )

Apterous growth rate (r ) depends on:
temperature
phenological stages of wheat

For the modelling:
data collected on fields

S. avenae population densities measured in wheat fields from 1975
to 2004
Phenological stages of wheat recorded according to Zadoks’
numeric scale
minimum, maximum and mean temperature data daily recorded

Method: nonlinear regression
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Model’s definition
Mathematical study is done
All coefficients have been estimated
Next step: model’s validation on data
Next step: making of Decision Support System (DSS)
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