

Including the costs of plant disease into risk analyses related to food security

Annika Djurle

Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden

Crop losses

QUANTITY

QUALITY

Pre-harvest Post-harvest

IN FUTURE CROPS

Crop losses – Who loses?

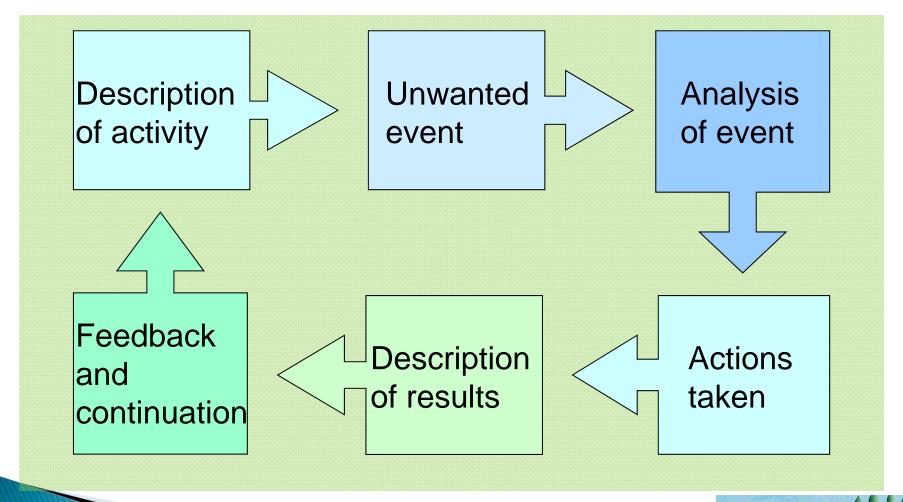
- ▶ **GROWERS:** Cost of control, reduced storability, limited choice of crop or cultivars, ...
- **CONSUMERS:** Lack of food, increased prices, toxic components...
- Pesticide pollution, loss of plant nutrients

- RURAL COMMUNITY
- TRADE, EXPORTERS
- **GOVERNMENT**

Estimate crop losses

- At the farm level
- Sum of all farmer's losses (Haverkort, 2008)
- Reference yield; attainable, normal, average yield

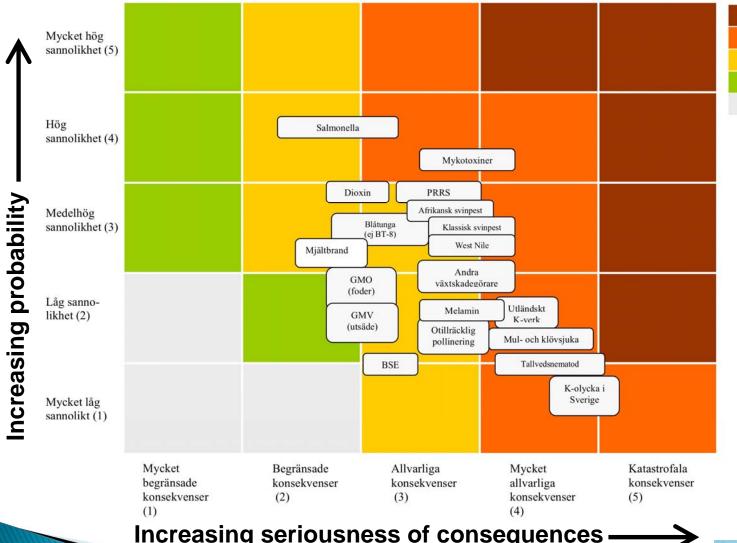
Crop losses-effects on society



- Effects on society level
- Compensation of national losses by import
- Food security
- Risk and vulnerability analysis

A model for risk- and vulnerability analysis

Mycket hög risk


Medelhög risk

Mycket låg risk

Hög risk

Låg risk

Board of Agriculture Risk Matrix

Increasing seriousness of consequences -

Current risk- and vulnerability analysis in Sweden

Focus on traded plant products Seedborne and soilborne pathogens

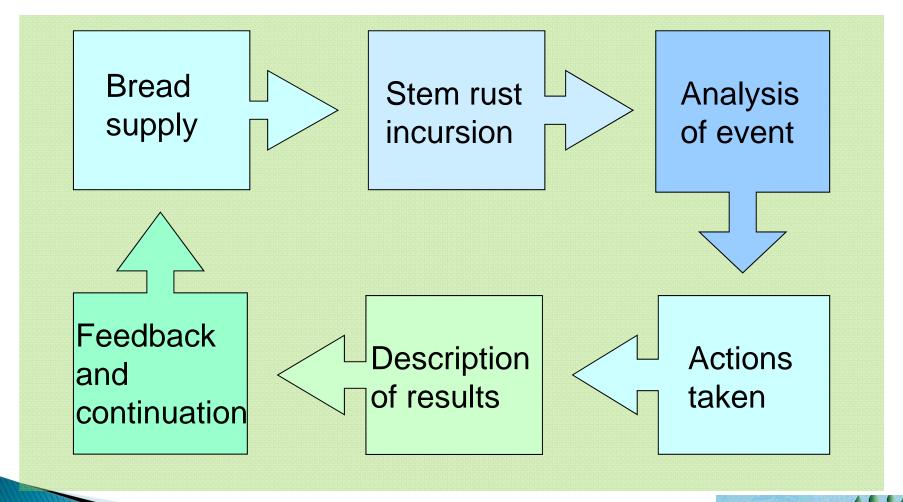
Pine-wood nematode (*Bursaphelenchus xylophilus*), Siberian pine-tree lappet moth (*Dendrolinus pini*), Potato wart (*Synchytrium endobioticum*), Asian long-horn (*Anoplophora glabripennis, A. chinensis*) Non-approved genetically modified plant

Responsibility for the food chain?

How do we classify diseases?

- Crop
- Pathogen
- Dispersal mode
- Focal vs. widespread
- Chronic acute emerging
- Classifications steer what we think is important
- What's on the radar ?

Where would you put wheat stem



rust? A stem rust epidemic in Sweden 1951 led to 30% yield loss

Very high probability			
Very low probability			
	Very limited consequences	Serious consequences	Catastrophic consequences

A model for risk- and vulnerability analysis. Example: Wheat Stem rust

Analysis of a stem rust incursion

- What might happen
- How far does it spread (Sweden, Europe, Eurasia, global)
- How much loss?
- Availability to use pesticides?
- Buffering capacity of the international market

Possible actions taken (or needed?) 👫

- Monitoring
- Scale of incursion?
- Size of reserves?
- Barberry eradication?
 - Eradication law in Sweden was repealed in 1994
- Alternate grains?
- Use of pesticides?
- Use of (new) resistant cultivars?

Who eats first?

This work is financed by the Swedish University of Agricultural Sciences and the Swedish Food Agency

