Innovative cultivation systems: new conditions for disease and pest management in protected horticulture

J.C. Bakker, Wageningen UR Greenhouse Horticulture sjaak.bakker@wur.nl; www.glastuinbouw.wur.nl

Outline

- Introduction
 - Innovative cultivation systems with focus on:
 - Water use efficiency/ reduced water use
 - Energy use efficiency/ reduced CO₂ emission
 - Automation
- New techniques and concepts
- Impact and interaction with crop protection

For quality of Me

Outline

- Introduction
- Innovative cultivation systems with focus on:
 - Water use efficiency/ reduced water use
 - Energy use efficiency/ reduced CO₂ emission
 - Automation
- New techniques and concepts
- Impact and interaction with crop protection

For quality of life

Outline

Introduction

- Innovative cultivation systems with focus on
 - Water use efficiency/ reduced water use
 - Energy use efficiency/ reduced CO₂ emission
 - Automation
- New techniques and concepts
- Impact and interaction with crop protection

For quality of life

1. Maximum use of solar energy

Radiation = energy, radiation = cropgrowth Minimal construction parts and optimal transmission of the materials

Effects of covers at equal contr greenhouses	rol settings for temperature and	humidity in
Greenhouse cover	(fossil) energy use	
	m ³ natural gas/m ²	
Single (glass)	53 (100 %)	
Single (glass) with screen	40 (75 %)	
Double cover	40 (75 %)	
Double with screen	33 (62 %)	
Double with low emission	28 (53 %)	
Three layer with low emission	26 (49 %)	
Source: the Solar greenhouse, G.P.A. Bot et al.	•	-

4. Efficient energy use: control strategies

- Aim: Optimize crop response (growth, production) with minimal energy input
 - The key: combine greenhouse physics (energy loss) and physiological information (crop growth)

4. Efficient energy use: control strategies Temperature Integration Image: a strategies Image: a strategi

4. Efficient use by integration of techniques: new

growing concept tomato

- high insulation (single glass + 2 screens)
- 1°C lower heating temperature
- Increased ventilation set point → more CO_2
- Active cooling
- Humidity set point ventilation > VPD 1.5g/m³
- air circulation

For quality of Me

Outline

Introduction

- Innovative cultivation systems with focus on:
 - Water use efficiency/ reduced water use
 - Energy use efficiency/ reduced CO₂ emission
 - Automatio
- New techniques and concepts
- Impact and interaction with crop protection

For quality of life

Automation and optimal use of area

Production systems with high grade of automation and robotics

 Systems with mobile benches, gutters and individual (pot) plants

WAGENINGEN UR

Automation and optimal use of area

Multilayer production

For quality of life

Automation: robotics Sorting/grading with vision

Outline

- Introduction
 - Innovative cultivation systems with focus on:
 - Water use efficiency/ reduced water use
 - Energy use efficiency/ reduced CO₂ emission
 Automation
- New techniques and concepts
- Impact and interaction with crop protection

New techniques and conceptsDiffuse lightImage: pring crop
54.4 kg/m2Autumn crop
2008+8.8%+9.7%
59.4No light loss3% less lightImage: pring crop
54.4 kg/m2+8.8%+9.7%
3% less lightImage: pring crop
54.4 kg/m2+8.8%+9.7%
2008No light loss3% less light

WAGENINGEN UR

New techniques and concepts

(Semi) closed/ completely controlled greenhouses:

- No or minimum ventilation openings
- Independent control of Temperature, humidity and CO₂
- Water recovery
- Less crop protectio
- Higher CO₂ concentration, production increase (to 10-20%)
- Energy saving (+30%)

WAGENINGEN UR For quality of life

Semi closed greenhouses: other climate conditions

New techniques and concepts: Electricity producing greenhouse

- Separation of solar radiation PAR -- N
- Focusing of the NIR or direct radiation (Fresnel system)
- Conversion of radiation to electrical energy (photo voltaic cells)

Recent developments: robotics

- Prototype harvesting robot cucumber
- Harvesting robot cut roses
- Sorting/grading with vision

Exploring new techniques and concepts : Advanced sensor technology: Multiple Imaging Plant Stress: MIPS as early Wultiple: chlorofyl fluorescence, colour, Infra red Infra red Plant: leaf, plant, crop Stress: Vertex

VAGENINGEN UR For quality of life

chlorofyl fluorescence

Outline

- Introduction
 - Innovative cultivation systems with focus on:
 - Water use efficiency/ reduced water use
 - Energy use efficiency/ reduced CO₂ emission
 - Automatio
- New techniques and concepts
- Impact and interaction with crop protection

For quality of life

Acknowledgements

Colleagues:

- Silke Hemming, Anja Dieleman, Erik van Os, Ellen Beerling, Anton van der Linden, Pierre Ramakers, Joost Snels, Janjo de Haan, Arie de Gelder, Wim Voogt, Jos Balendonck, Marcel Raaphorst
- Organisations: Ministry of Agriculture, Product Board of Horticultue and research Programme Greenhouse as Energy Source

WAGENINGEN UR For quality of life